Moving object recognition using multi-view three-dimensional convolutional neural networks

Tao He, Hua Mao, Zhang Yi

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)
7 Downloads (Pure)


Moving object recognition (MOR) is an important but challenging problem in the field of computer vision. The aim of MOR is to recognize moving objects in a given video dataset. Convolutional neural networks (CNNs) have been extensively used for image recognition and video analysis problems. Recently, a 3D-CNN, which contains 3D convolution layers, was proposed to address MOR problems by successfully extracting spatiotemporal features. In this paper, a multi-view (MV) 3D-CNN is proposed for MOR. This model combines 3D-CNNs with a well-known MV learning technique. Because multi-view learning techniques have the ability to obtain more view-related features from videos captured by different cameras, the proposed model can extract more representative features. Moreover, the model contains a special view-pooling layer that can fuse the feature information from previous layers. The proposed MV3D-CNN is applied to both real-world moving vehicle recognition and sign language recognition tasks. The experimental results show that the proposed model possesses good performance.
Original languageEnglish
Pages (from-to)3827-3835
Number of pages9
JournalNeural Computing and Applications
Issue number12
Early online date23 Mar 2016
Publication statusPublished - Dec 2017


Dive into the research topics of 'Moving object recognition using multi-view three-dimensional convolutional neural networks'. Together they form a unique fingerprint.

Cite this